An Asymptotic Preserving Scheme Based on a New Formulation for NLS in the Semiclassical Limit
نویسندگان
چکیده
We consider the semiclassical limit for the nonlinear Schrödinger equation. We introduce a phase/amplitude representation given by a system similar to the hydrodynamical formulation, whose novelty consists of including some asymptotically vanishing viscosity. We prove that the system is always locally well-posed in a class of Sobolev spaces, and globally well-posed for a fixed positive Planck constant in the one-dimensional case. We propose a second order numerical scheme which is asymptotic preserving. Before singularities appear in the limiting Euler equation, we recover the quadratic physical observables as well as the wave function with mesh size and time step independent of the Planck constant. This approach is also well suited to the linear Schrödinger equation.
منابع مشابه
A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit
We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and non-equilibrium parts. We also use a projection technique that allows to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the non-equilibrium part. By using a suita...
متن کاملZero-dispersion Limit for Integrable Equations on the Half-line with Linearisable Data
In recent years, there has been a series of results of Fokas and collaborators on boundary value problems for soliton equations (see [3] for a comprehensive review). The method of Fokas in [3] goes beyond existence and uniqueness. In fact, it reduces these problems to Riemann-Hilbert factorisation problems in the complex plane, thus generalising the existing theory which reduces initial value p...
متن کاملAn efficient nonstandard numerical method with positivity preserving property
Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملAn Asymptotic Preserving Scheme for Low Froude Number Shallow Flows
We present an asymptotic preserving (AP), large time-step scheme for the shallow water equations in the low Froude number limit. Based on a multiscale asymptotic expansion, the momentum fluxes are split into a nonstiff and a stiff part. A semi-implicit discretisation, where the nonstiff terms are treated explicitly and stiff terms implicitly in time, is crucial to achieve the AP property. A com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 11 شماره
صفحات -
تاریخ انتشار 2013